
NEWS ALERT

地熱発電におけるスケールと腐食の影響

グローバルインダストリーアナリストによる 2021 年 4 月のレポートでは、世界の地熱エネルギー市場は 2020 年の 47 億ドル(5,400 億円)から、2027 年までに 89 億ドル(10,200 億円)に達すると予想され、米国市場は 2020 年に 14 億ドルと推定されています。[1]

米国エネルギー情報局によって概説されているように、地熱エネルギーシステムは 3 つのカテゴリに分類されます。[2]

- ・直接使用および地域暖房システム
- 地熱発電所
- ・地熱ヒートポンプ

この論文は、地熱発電市場における腐食とスケール制御に焦点を当てています。

地熱発電所は次のように分類されます。[3]

- ・最も単純で最も古い
- ・フラッシュスチーム-高圧の高温地下水をスチームに変換します
- ・ごくありふれた
- ・バイナリ-地熱温水を熱源として使用して、二次液体を蒸気に変えます
- ・最新のデザイン

Flash steam power plant

Flash
Turbine
Generator

Rock layers

Injection
well

Rock layers

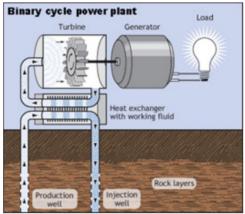


Image Source: U.S. Department of Energy

乾式蒸気プラントの市場は、2027 年末までに 8.4%(CAGR:年平均成長率)成長して 24億米ドル(2,760億円)になると予測され、バイナリプラントの平均成長率は 8.8%と予測されています。 フラッシュスチームセグメントでは、米国、カナダ、日本、中国、ヨーロッパでの成長により 10.6%の平均成長率が見込まれ、2020年の推定 21億米ドル(2,415億円)の地域市場シェアから、2027年には 43億米ドル(4,950億円)に発展し、中国は最も早く成長します。 フラッシュ蒸気セクターのアジア太平洋地域のリーダーには、オーストラリア、インド、韓国が含まれます(2027年の地域予測は 10億米ドル)。[1]

Cortec[®] Corporation is the global leader in innovative, environmentally responsible VpCI[®] and MCI[®] corrosion control technologies for the Packaging, Metalworking, Construction, Electronics, Water Treatment, Oil & Gas, and other industries. Headquartered in St. Paul, Minnesota, Cortec[®] manufactures over 400 products distributed worldwide. ISO 9001, ISO 14001, and ISO 17025 Certified.

2020 年の終わりまでに、世界中では 522 の地熱発電所が稼働しています。[4] 2019 年の時点で、カリフォルニアには 43 の地熱発電所が稼働しており、サンフランシスコ北部のガイザーズコンプレックスで最も高い割合を占めています。[5] カリフォルニアには、ヘルズキッチン(2023年)とカーサディアプロ IV(2021年)の 2 つの候補地があります。[6] カリフォルニアに次いで、ネバダ州は米国で2番目に大きな地熱生産州です。

下の表は、2020年に設置された地熱発電の上位 10 か国を示しています。 [7]

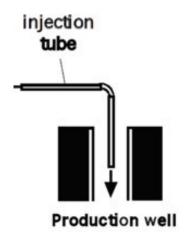
Mwe: megawatt electrical (メガワットエレクトリカル)

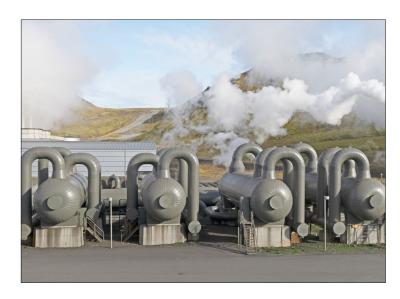
Country	MWe Installed in 2020
1. USA	3,700.00
2. Indonesia	2,289.00
3. Philippines	1,918.00
4. Turkey	1,549.00
5. Kenya	1,193.00
6. Mexico	1,005.80
7. New Zealand	1,064.00
8. Italy	916.00
9. Japan	550.00
10. Iceland	755.00

地熱発電に関する米国のトップ州[8]

State	Installed MW Capacity
1. California	2,792
2. Nevada	805
3. Utah	84
4. Hawaii	51
5. Oregon	37
6. New Mexico	19
7. Idaho	18

ThinkGeoEnergy のグローバル地熱発電所マップ[9]




Transparency Market Research(TMR)のレポートは、政府間の化石燃料に対する態度の変化と再生可能エネルギーへの注目の高まりのおかげで、地熱発電は有望な 10 年先を示しています。二酸化炭素排出量を削減するという目的は、企業が地熱エネルギーに頼るきっかけになっています。高い初期投資と ROI の遅れによる投資家の誘致への挑戦にもかかわらず、TMR は、地熱発電設備の価値が 2027 年末までに約 320 億米ドル(36,800 億円)まで着実に成長すると予想しています。[10]

地熱井からの蒸気や温水は、塩素、硫化水素、硫酸、炭酸、アンモニアなどの腐食性元素を多量に含んでいます。これらの元素は、プラント内では次のタイプの腐食を引き起こします。均一腐食、孔食、応力腐食割れ、および硫黄応力腐食割れ、水素の泡立ちやスケールの形成も発生する可能性があります。地熱システムの一般的なタイプのスケールは、炭酸カルシウム、重金属硫化物、及びシリカまたは金属ケイ酸塩です。蒸気や温水の腐食性要素は、生産井および圧入井のケーシング、蒸気タービンの流路、およびバイナリシステムの熱交換器の金属表面を攻撃します。

蒸気/温水から放出される腐食性ガスは、インフラストラクチャ(鉄鋼およびコンクリート)、機械の外面、および電気制御システム(コントロールパネル、ジャンクションボックス、モーター制御センター、モーターなど)を攻撃します。これらの過酷な地熱条件の影響を最小限に抑えるために、以下の材料と方法が提案されます。

井戸とタービンのスケールと腐食の防止

- ・スケールと腐食防止剤を生産井に注入します
- ・蒸気タービンからの排出口にスケールと腐食防止剤を注入します
- ・タービンブレードとケーシング内部を VpCI®-396 カーバイドでコーティングします
- ·S-15 を使用する

オペレーションシステムの保護

■潤滑システム

- ・-528、M-530、M-531を重量比2%~5%で追加します
- ■電子機器/電気機器
 - ・エミッターの取り付け: VpCI®-101 デバイス、VpCI®-105 エミッター、VpCI®-111 エミッター、VpCI®-308 ポーチ
 - ・ElectriCorr™VpCl®-239 を適用します
- ■バルブステムやパッキンボディボルトなどのねじ山付きアセンブ リ
 - ・VpCI®スーパーペネトラントを塗布します
- ■露出した機械加工面
 - ・VpCI-391 または EcoShield®386 クリアでコーティングします
- ■外部塗装面-次のコーティングから選択します。
 - ・VpCI-386HT は 750° F (399° C) に達するタービンおよびそ の他 の機器用
 - ·VpCI-371 は 1250° F (677° C) に達する表面用
 - ・VpCI-386、VpCI-387、VpCI-384、VpCI-375 (350°F (177°C) 未満の水没していない外面用)
- ■コーティング剤の選択を最適化するためには、表面と接触する液体のサンプルを分析のために CORTEC ラボに送ることをお勧めします。
- ■断熱材の下
 - ・VpCI-658、VpCI-619 を適用する
- ■変圧器油
 - ・M-236 を添加

■ジェネレーター

- ・ジェネレーターハウジング内に VpCI-308 ポーチを配置
- ■蒸気システム
 - ・坑口で生産蒸気に Corrosorber®液体を注入
 - ・CO2 および H2S 含有量に基づいて Cortec®ラボによって計算される線量率

■冷却水システム

- ・Corrosorber を注入®液体および VpCI-647 をコンデンサーホットウェルに注入します。
- ・線量率は、CO2 および H2S 含有量に基づいて CORTEC ラボに よって計算されます。

機器のシャットダウンとレイアップ

■タービン

- ・蒸気側
- ・0.3-0.5oz。/ft3 (0.31-0.52 L/m3) の VpCI-337 による噴霧 ・オイル側(操作中に M-528、M-530、M-531 を使用しない場合)
 - ・ベアリングハウジング、及び、供給ラインと排水ラインに M-528、M-530、M-531 を 0.3-0.5 oz./ft3 (0.31-0.52 L / m3) を噴霧

■ジェネレーター

- ・オイル側(操作中に M-528、M-530、M-531 を使用しない場合)
- ・フォグベアリングハウジング、供給、及び、排出ラインに M-528、M-530、M-531 を 0.3-0.5 oz./ft3 (0.31-0.5 oz./ft3) (031-0.52 L / m3) 噴霧

■電気側

- ・すべての電気接点に ElectriCorr™VpCI®-239 をスプレーします
- ・ジャンクションボックス、コントロールパネル、エンクロージャー、および発電機ハウジングに適切なエミッターを取り付けます

■スイッチギア

- ・VpCI-422 または VpC-423®で錆を取り除きます。続いて VpCI-414 で中和する。
- ・塗装するすべての表面を CorrVerter®鋳転換型防錆コーティン グを下塗りします
- ・VpCI-396 でトップコートします
- ・すべての接点に ElectriCorr™VpCI-239 をスプレーします
- ・適切なエミッターを取り付けます

■トランスフォーマー

- ・VpCI-422、又わ VpCI-423 で錆を取り除きます。続いて VpCI-414 で中和します。
- ・塗装されるすべての表面に CorrVerter®錆コンバータープライマーを塗布します
- ・EcoShield386 でトップコートします
- ・電気接点部の全てに ElectriCorr™VpCI-239 をスプレーします。
- ・適切なエミッターの取り付け

■ポンプ (オイルを除いて)

- ・流路
 - ・VpCI-337 を 0.3-0.5 oz./ft3 (0.31-0.52 L / m3) 噴霧する
- ・オイル側(操作中に M-529 を使用しない場合)
 - ・フォグベアリングハウジング、供給、及び、排出ラインに M-528、M-530、M-531 を 0.3-0.5 oz./ft3 (0.31-0.5 oz./ft3) (031-0.52 L / m3) 噴霧
- ・ポンプ(オイル)
 - ・流路
 - ・M-528、M-530、または M-531 を 0.3-0.5 oz./ft3 (0.31-0.52 L / m3) を噴霧
- ・オイル側(操作中に M-529 を使用しない場合)
 - ・フォグベアリングハウジング、供給、及び、排出ラインに M-528、M-530、M-531 を 0.3-0.5 oz./ft3 (0.31-0.5 oz./ft3) (031-0.52 L/m)噴霧
- ・配管 (オイル)
 - ・M-528、M-530、M-531 を 0.3-0.5 oz./ft3 (0.31-0.5 oz./ft3) (031-0.52 L / m3) 噴霧
- ・配管(非オイル)
 - ・VpCI-337 を 0.3-0.5 oz./ft3 (0.31-0.52 L / m3) 噴霧
- ・冷却水システム

・オプション1:

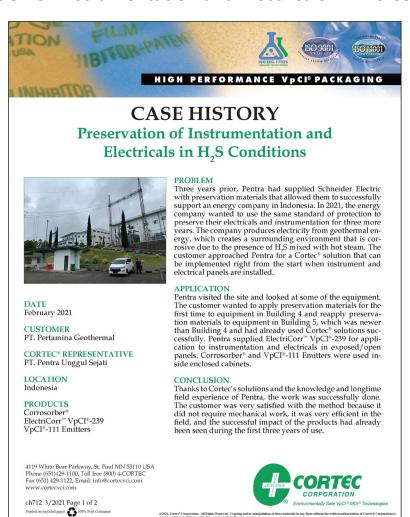
- ・凝縮水注入と凝縮器への凝縮水入口の間にジャンパーシス テムを設定します
- ・凝縮水に重量比 0.3~1.0%の VpCI-649 を添加し、24 時間 循環させます
 - ・排水または水を抜かないようにする
 - ・システムが排水されている場合は、CoolingTowerFrog® 水溶性バッグを冷却水コンポーネントに入れる

・オプション 2:

- ・凝縮液注入と凝縮器への凝縮液入口の間にジャンパーシステムを設定します
- ・VpCI-337 を (0.31-0.52 L / m3) で、コンデンサーとすべてのポンプおよび配管に噴霧します
 - ・VpCI-337 の噴霧距離を伸ばすには、システムの可能な部分を切り離し、部分部分に対し噴霧することが必要な場合があります

一般的なメンテナンスと修理

- ・錆びた全ての面を VpCI-423、又は、VpCI-422 を使用して落とす
 - · VpCI-414 の 10%溶液で中和します
- ・露出したすべての機械加工面を VpCI-414 の 10%溶液で洗浄します
 - ・VpCI-391 でコーティングします
- ・バルブステム、パッキングボディボルト、ファスナーなどのすべてのネジ付きアセンブリに VpCl スーパーペネトラントをスプレーします
- ・適切な Cortec®コーティングを塗装面に塗ります


Product Name	Product Data Sheet
Cooling Tower Frog®	https://www.cortecvci.com/Publications/PDS/Cooling Tower Frog.pdf
Corrosorber®	https://www.cortecvci.com/Publications/PDS/Corrosorber.pdf
CorrVerter® Rust Converter Primer	https://www.cortecvci.com/Publications/PDS/CorrVerter.pdf
EcoShield® 386	https://www.cortecvci.com/Publications/PDS/EcoShield-386.pdf
ElectriCorr [™] VpCI®-239	https://www.cortecvci.com/Publications/PDS/ElectriCorr-VpCI-239.pdf
M-236	https://www.cortecvci.com/Publications/PDS/M-236.pdf
M-528	https://www.cortecvci.com/Publications/PDS/M-528.pdf
M-530	https://www.cortecvci.com/Publications/PDS/M-530.pdf
M-531	https://www.cortecvci.com/Publications/PDS/M-531.pdf
S-15	https://www.cortecvci.com/Publications/PDS/S-15.pdf
VpCI® Super Penetrant	https://www.cortecvci.com/Publications/PDS/VpCI Super Penetrant.pdf
VpCI®-101 Device	https://www.cortecvci.com/Publications/PDS/VpCI-101.pdf
VpCI®-105 Emitter	https://www.cortecvci.com/Publications/PDS/105.pdf
VpCI®-111 Emitter	https://www.cortecvci.com/Publications/PDS/VpCI-111.pdf
VpCI®-308 Pouch	https://www.cortecvci.com/Publications/PDS/VpCI-308_Pouch.pdf
VpCI®-337	https://www.cortecvci.com/Publications/PDS/VpCI-337-VpCI-337 Winterized.pdf
VpCI®-371	https://www.cortecvci.com/Publications/PDS/VpCI-371.pdf
VpCI®-375	https://www.cortecvci.com/Publications/PDS/VpCI-375.pdf
VpCI®-384	https://www.cortecvci.com/Publications/PDS/VpCI-384.pdf
VpCI®-386	https://www.cortecvci.com/Publications/PDS/VpCI-386.pdf
VpCI®-386 HT	https://www.cortecvci.com/Publications/PDS/VpCI-386-HT.pdf
VpCI®-387	https://www.cortecvci.com/Publications/PDS/VpCI-387.pdf

VpCI®-391	https://www.cortecvci.com/wp-content/uploads/VpCI-391NEW.pdf
VpCI®-396	https://www.cortecvci.com/Publications/PDS/VpCI-396.pdf
VpCI®-414	https://www.cortecvci.com/Publications/PDS/VpCI-414.pdf
VpCI®-422	https://www.cortecvci.com/Publications/PDS/VpCI-422.pdf
VpCI®-423	https://www.cortecvci.com/Publications/PDS/VpCI-423.pdf
VpCI®-619	https://www.cortecvci.com/Publications/PDS/VpCI-619.pdf
VpCI®-647	https://www.cortecvci.com/Publications/PDS/VpCI-647.pdf
VpCI®-649	https://www.cortecvci.com/Publications/PDS/VpCI-649-VpCI-649MF VpCI649 Winterized.pdf
VpCI®-658	https://www.cortecvci.com/Publications/PDS/VpCI-658.pdf

CASE HISTORIES

Preservation of Instrumentation and Electricals in H2S Conditions

https://www.corteccasehistories.com/?s2member_file_download=access-s2member-level1/ch712.pdf

References

- Research and Markets.com. "Geothermal Energy Global Market Trajectory & Analytics." Report Description. April 2021. < https://www.researchandmarkets.com/reports/1382342/geothermal energy global market trajectory and#relb0-5139915>.
- 2. U.S. Energy Information Administration. "Geothermal explained: Geothermal power plants." 19 November 2020 <a href="https://www.eia.gov/energyexplained/geothermal/
- 3. Clean Energy Ideas. "Geothermal Power Plants." 19 September 2018 < https://www.cleanenergy-ideas.com/geothermal/geothermal-power-geothermal-power-plant/>.
- Richter, Alexander. "ThinkGeoEnergy Global Geothermal Power Plant Map updated." ThinkGeoEnergy.com.
 November 2020 < https://www.thinkgeoenergy.com/thinkgeoenergy-global-geothermal-power-plant-map-updated/>.
- 5. California Energy Commission. "California Geothermal Energy Statistics and Data." Energy. CA.gov. 2019. https://ww2.energy.ca.gov/almanac/renewables_data/geothermal/index_cms.php.
- 6. Wikipedia. "List of geothermal power stations in the United States." 25 January 2021. https://en.wikipedia.org/wiki/List of geothermal power stations in the United States>.
- 7. Huttrer, Gerald W. "Geothermal Power Generation in the World 2015-2020 Update Report." Proceedings of World Geothermal Congress 2020. Reykjavik, Iceland. 2 May 2020. Geothermal-Energy.org. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01017.pdf.
- 8. Sen Nag, Oishimaya, Ph.D. "US States With The Highest Geothermal Capacity." WorldAtlas. 24 May 2020. https://www.worldatlas.com/articles/us-states-with-the-highestgeothermal-capacity.html.
- 9. ThinkGeoEnergy.com. Global Geothermal Power Plant Map. 2021 < https://www.thinkgeoenergy.com/map/>.
- 10. Transparency Market Research. "Analysis of Potential Impact of COVID-19 on Geothermal Power Equipment Market." Published on SBWire.com. 12 April 2021. http://www.sbwire.com/press-releases/geothermal-power-equipment-mar/release-1335302.htm>.

